# A Novel and Robust Face Clustering Method via Adaptive Difference Dictionary

Jiaxiang  ${\rm Ren}^1$  , Shengjie Zhao  $^1$  , Kai  ${\rm Yang}^1$  and Brian Nlong Zhao  $^2$ 

 $^1\,{\rm Key}$  Laboratory of Embedded System and Service Computing, Tongji University  $^2\,{\rm Shanghai}$  High School International Division

14 July, 2017

### Contents

#### 1 Sparse Subspace Clustering

- Introduction to Sparse Subspace Clustering
- Algorithm of Sparse Subspace Clustering
- Experiments of SSC
- Analysis

#### 2 Enhanced Sparse Subspace Clustering

- Algorithm
- Improvements

#### 3 Q&A

Introduction to Sparse Subspace Clustering

# Sparse Subspace Clustering(SSC)

- E. Elhamifar and R. Vidal, "Sparse subspace clustering", CVPR 2009. IEEE Conference on, IEEE. pp. 2790–2797.
- E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

Introduction to Sparse Subspace Clustering

## Face Clustering



#### Input & Target

- Input : variant face images from multiple subjects
- Target: find images that belong to the same subject

#### The Extended Yale B Dataset

- images from 38 subjects
- 64 images per subject
- resolution:  $192 \times 168$

Algorithm of Sparse Subspace Clustering

# SSC Algorithm

#### The Self-Expressiveness Property of the Data

Each data point in a union of subspaces can be efficiently reconstructed by a combination of other points in the dataset.

min 
$$\|\boldsymbol{C}\|_1 + \lambda \|\boldsymbol{E}\|_1$$
  
s.t.  $\boldsymbol{Y} = \boldsymbol{Y}\boldsymbol{C} + \boldsymbol{E}$ , diag $(\boldsymbol{C}) = \boldsymbol{0}$ , (1)

•  $\boldsymbol{c} = [\boldsymbol{c}_1, \ldots, \boldsymbol{c}_N]$  is the correlative coefficient matrix

• 
$$\mathbf{Y} = [\mathbf{Y}_{N_1}, \dots, \mathbf{Y}_{N_K}] = [\mathbf{y}_1, \dots, \mathbf{y}_N] \in \mathbb{R}^{M \times N}$$
 is the input matrix, where  $N = \sum_{k=1}^K N_k$ 

•  $\mathbf{E} = [\mathbf{e}_1, \dots, \mathbf{e}_N] \in \mathbb{R}^{M \times N}$  is the auxiliary outliers matrix

$$\boldsymbol{w} = |\boldsymbol{c}| + |\boldsymbol{c}^{\mathsf{T}}| \tag{2}$$

where  $\mathbf{W} = |\mathbf{C}| + |\mathbf{C}|^{\mathsf{T}}$  is the similarity matrix, which means the similarity between the point *i* and *j* is equal to the sum of the absolute values of their correlative coefficients, *i.e.*,  $|c_{ij}| + |c_{ij}|$ .

Experiments of SSC

### **Experiments Results**

| Algorithm   | LSA   | SCC   | LRR   | LRR-H | LRSC  | SSC   |  |
|-------------|-------|-------|-------|-------|-------|-------|--|
| 2 Subjects  |       |       |       |       |       |       |  |
| Mean        | 32.80 | 16.62 | 9.52  | 2.54  | 5.32  | 1.86  |  |
| Median      | 47.66 | 7.82  | 5.47  | 0.78  | 4.69  | 0.00  |  |
| 3 Subjects  |       |       |       |       |       |       |  |
| Mean        | 52.29 | 38.16 | 19.52 | 4.21  | 8.47  | 3.10  |  |
| Median      | 50.00 | 39.06 | 14.58 | 2.60  | 7.81  | 1.04  |  |
| 5 Subjects  |       |       |       |       |       |       |  |
| Mean        | 58.02 | 58.90 | 34.16 | 6.90  | 12.24 | 4.31  |  |
| Median      | 56.87 | 59.38 | 35.00 | 5.63  | 11.25 | 2.50  |  |
| 8 Subjects  |       |       |       |       |       |       |  |
| Mean        | 59.19 | 66.11 | 41.19 | 14.34 | 23.72 | 5.85  |  |
| Median      | 58.59 | 64.65 | 43.75 | 10.06 | 28.03 | 4.49  |  |
| 10 Subjects |       |       |       |       |       |       |  |
| Mean        | 60.42 | 73.02 | 38.85 | 22.92 | 30.36 | 10.94 |  |
| Median      | 57.50 | 75.78 | 41.09 | 23.59 | 28.75 | 5.63  |  |

Figure: Clustering Error (%) of Different Algorithms on the Extended Yale B Dataset without Preprocessing the Data <sup>1</sup>

<sup>&</sup>lt;sup>1</sup> E. Elhamifar and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

Enhanced Sparse Subspace Clustering

## Analysis of Results



Figure: Coefficient matrix obtained when clustering error is less than 10%.



Figure: Coefficient matrix obtained when clustering error is higher than 20%.

#### The Defects of SSC

- Accuracy decreases for complicated variations
- Latent structures of multiple subspaces are too complicated to recover

#### Algorithm

### **Basic Idea of ESSC**



Figure: The sparse correlative coefficients of the 76-th sample recovered by the proposed ESSC.

#### Adaptive Difference Dictionary

- Specific features for clustering
- Common features for robustness
- More robust for complicated variations such as disguises (improvement up to 9.0%)
- Scalable and generalized for clustering more subjects

#### Algorithm



### Main Steps

- Construction of the adaptive difference dictionary
- Sparse optimization program
- Spectral clustering



Figure: Face clustering with the adaptive difference dictionary. The adaptive differences play the role to separate the samples so that they can gather in their own subspaces.

#### Algorithm

## Construction of the Adaptive Difference Dictionary

Computing coarse coefficient matrix:

$$Y = YC + E, \quad \text{s.t.} \quad \text{diag}(C) = 0. \tag{3}$$

Constructing the difference dictionary items:

$$SCR(\boldsymbol{c}_i) \triangleq \frac{max(\boldsymbol{c}_i)}{\|\boldsymbol{c}_i\|}.$$
 (4)

$$D \triangleq \{ \boldsymbol{d}_* | \forall \text{SCR}(\boldsymbol{c}_*) > 0.1 \} \in \mathbb{R}^{M \times N_d}, \\ \boldsymbol{d}_* \triangleq \boldsymbol{y}_* - \boldsymbol{y}_{\max(\boldsymbol{c}_*)}, \end{cases}$$
(5)

## Sparse optimization program via the adaptive difference dictionary

Computing robust coefficient matrix:

$$\mathbf{Y} = \begin{bmatrix} \mathbf{Y}\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{C} \\ \mathbf{B} \end{bmatrix} + \mathbf{Z}, \quad \text{s.t.} \quad \text{diag}(\mathbf{C}) = \mathbf{0}, \tag{6}$$

where  $\pmb{Z}$  models the Gaussian-noise in data. The corresponding constrained optimization program is

min 
$$\left\| \begin{bmatrix} \boldsymbol{C} \\ \boldsymbol{B} \end{bmatrix} \right\|_{1} + \frac{\lambda_{z}}{2} \| \boldsymbol{Z} \|_{F}^{2}$$
  
s.t.  $\boldsymbol{Y} = [\boldsymbol{Y}\boldsymbol{D}] \begin{bmatrix} \boldsymbol{C} \\ \boldsymbol{B} \end{bmatrix} + \boldsymbol{Z}, \ \boldsymbol{C}^{\mathsf{T}} \mathbf{1} = \mathbf{1}, \ \text{diag}(\boldsymbol{C}) = \mathbf{0},$  (7)

which can be solved using the ADMM approach. Thereafter, we use a spectral clustering to get the final clustering results.

#### Improvements

### Geometric Interpretation



Figure: The sparse representation for recovering an image sample  $\mathbf{y} \in S_1$  in the intersection of  $S_1$  and  $S_2 \oplus S_3$ . (a) The distance to  $\mathcal{P}_1$  is shorter than to  $\mathcal{P}_{-1}$ , so the sparse representation recovers correctly. (b) The distribution of the samples in  $S_1$  is odd because the spanned subspace is close to a line. The distance to  $\mathcal{P}_1$  is larger than to  $\mathcal{P}_{-1}$ , so the sparse representation recovers incorrectly. (c) The adaptive difference dictionary generates the common feature space  $S_D$ , where any image sample can "travel around" to find the nearest polytope of the subspace correctly.

Improvements

# **Clustering Variant Face Images**

Table: Clustering Error Rates (%) of Different Algorithms on the AR Database Using Different Features for K = 100 Subjects

| Variation        |                            | Method |       |          |       |  |
|------------------|----------------------------|--------|-------|----------|-------|--|
| Sample × Subject | Feature (Dimension)        | LRR    | SSC   | RPCA+SSC | ESSC  |  |
| Expression       | Downsample(55 $\times$ 40) | 73.00  | 14.50 | 16.00    | 13.00 |  |
| $4 \times 100$   | LBP(5192)                  | 70.75  | 8.75  | 4.25     | 10.00 |  |
| Illumination     | Downsample(55 $\times$ 40) | 65.67  | 31.00 | 30.33    | 31.00 |  |
| $3 \times 100$   | LBP(5192)                  | 67.67  | 6.00  | 6.00     | 0.33  |  |
| Disguise         | Downsample(55 $\times$ 40) | 68.00  | 57.33 | 60.33    | 55.00 |  |
| $3 \times 100$   | LBP(5192)                  | 65.33  | 17.67 | 14.33    | 12.67 |  |

The clustering error for ESSC is the lowest in almost all cases which confirms the effectiveness of the adaptive difference dictionary.

#### Improvements

# **Clustering Scalability**



Figure: Clustering error rates for variant disguises on the AR database as a function of the number of subjects.

# Q & A

# Thanks!